Marietta High School: AP Computer Science A 

OVERVIEW 

This course is an online 36-week, 5 classroom hours per week course for students taking the College Board’s Advanced Placement Computer Science A exam. Every module in the course is designed to be completed in two weeks. Every module has an assignment dealing with the GridWorld case study, a hands-on lab, and a programming assignment. The computer language that will be used is Java, which is a free download for either a Macintosh or a Windows platform.
RESOURCES AND SUPPLEMENTARY MATERIALS 

Horstmann, Cay. 

Java Concepts (Fourth edition).  New York: Wiley, 2005.

Trees, Frances P. 


Advanced Placement Computer Science Study Guide 


(Fourth edition). New York: Wiley, 2006.

College Board. AP GridWorld  Case Study. 


New York: College Entrance Examination Board, 2006.

Course Objectives:
· Design and implement solutions to problems in a variety of application areas in Java.

· Use the standard Java library classes from the AP Java subset.

· Understand and be able to make changes to the GridWorld Case Study

· Identify major hardware and software components of a computer system.

· Consider ethical and social implications of computer use.

	Module
	Title, Topics, and  Student Objectives
	Assignments and AP Standards Covered

	1
	Introduction and Java Basics -

This module introduces students to the course as a whole, and covers the essential hardware software and system components of computer systems, and issues concerning the responsible use of computer technology.

· Learn about the architecture and history of computers.

· Download and setup your environment.

· Run your first Java program.

· Recognize syntax and logic errors.
	Introduction to Computer Architecture
	VI. A. Major hardware components; primary and secondary memory, processors, peripherals.

VI. B. System software; language translators/compilers, virtual machines, operating systems .

VI. C. Types of systems; single-user, networks.

VI. D. Responsible use of computer systems; reliability, privacy, legal issues, ethical ramifications.

	
	
	Setting up your computer
	I. A.1. Program design; read and understand a problem description, purpose and goals..

	
	
	Working with the BlueJ compiler
	I. A. 3. Program design; read and understand class specifications and relationships among the classes.

I. A. 5. Program design; identify reusable components from existing code using classes and class libraries.

	2
	Using Objects -

In this module students will learn, how to manipulate objects that belong to predefined classes.

· Learn about variables.

· Understand the concepts of classes and objects.

· Learn to call methods.

· Learn about parameters and return values.

· Be able to browse the API documentation.

· Learn the difference between objects and object references.
	GridWorld Case Study
	I. A.1. Program design; read and understand a problem description, purpose and goals.

	
	
	Lab
	II. B. 2. b. Programming constructs; variable declarations.

II. B. 3. Programming constructs; Console output.

II. C. Java library classes.

III. C. Understand and modify existing code.

	
	
	Programming Assignment
	I. A. 4. Program design; understand and implement a given class hierarchy.

II. A. 1. b. Implementation techniques; Methodology, top-down development.

II. B. 2. c. Programming constructs; class declarations.

	3
	Implementing Classes -

In this module students will learn how to design and implement their own classes.

· Become familiar with the process of implementing classes.

· Be able to implement simple methods.

· Understand the purpose and use of constructors.

·  Understand how to access instance fields and local variables.

·  Appreciate the importance of documentation comments.
	GridWorld Case Study
	III. A. Testing; perform integration testing.

III. C. Testing; understand and modify existing code.

	
	
	Lab and Programming Assignment
	I. B. 1. Class design; design and implement a class.

II. A. 1. a. Implementation techniques; Methodology, object-oriented development.

II. A. 1. b. Implementation techniques; Methodology, topdown development.

II. B. 1. Programming constructs; primitive types vs. objects.

II. B. 2. Programming constructs; Declaration, variable declaration, class declarations, method declarations, parameter declarations.

II. B. 3. Programming constructs; console output.

II. C. Java library classes.

III. A. 1. Testing; test classes and libraries isolation.

III. B. 1. Debugging; categorize errors: compile-time, logic.

III. B. 2. Debugging; identify and correct error.

IV. B. Classes.

	4
	Fundamental Data Types –

This module teaches how to manipulate numbers in Java. Students will learn about the properties and limitations of the number types in Java.

· Understand integer and floating point numbers.

· Recognize the limitations of the numeric types.

· Become aware of causes for overflow and roundoff errors.

· Understand the proper use of constants.

· Write arithmetic expressions in Java.
	GridWorld Case Study
	III. A. 2. Testing; identify boundary cases, generate appropriate test data.

III. A. 3. Testing: perform integration testing.

III. C. Understand and modify existing code.

	
	
	Lab
	II. B. 2. Programming constructs; Declaration, constants, variables, and classes.

II. C. Java library classes.

III. H. 1. Numerical representations and limits; representation of numbers in different bases.

III. H. 2. Numerical representations and limits; limitations of finite representations.

IV. A Simple data types.

	
	
	Programming Assignment
	I. B. 1. Class design; design and implement a class.

II. A. 1. Implementation techniques; Methodology, object-oriented development, topdown development.

II. B. 1. Programming constructs; primitive types vs. objects.

II. B. 3. Programming constructs; console output.

II. C. Java library classes.

IV. A. Simple data types.

IV. B. Classes.

	5
	Fundamental Data Types –

This module teaches how to manipulate strings in Java. Students will see how to manipulate strings in Java. It will cover the topic of input and output, which will enable them to implement interactive programs.

· Use the String type to define and manipulate character strings.

· Learn how to read program input and produce formatted output.
	GridWorld Case Study
	III. A. 2. Testing; identify boundary cases, generate appropriate test data.

III. A. 3. Testing: perform integration testing.

III. C. Understand and modify existing code.

	
	
	Lab and Programming Assignment


	III. A. 2. Testing; identify boundary cases.

IV. A. Simple data types.

	6
	Programming Graphics –

In this module students will learn how to write graphical applications.

· Be able to write simple graphical applications.

· Display graphical shapes such as lines and ellipses.

· Use colors.

· Display drawings consisting of many shapes.

· To read input from a dialog box.

· Develop test cases that validate the correctness of your programs.
	GridWorld Case Study
	III. A. 2. Testing; identify boundary cases, generate appropriate test data.

III. A. 3. Testing: perform integration testing.

III. C. Understand and modify existing code.

	
	
	Lab and Programming Assignment
	I. B. 1. Class design; design and implement a class.

II. A. 1. Implementation techniques; Methodology, object-oriented development, topdown development.

II. B. 1. Programming constructs; primitive types vs. objects.

II. B. 2. Programming constructs; Declaration, variable declaration, class declarations, method declarations, parameter declarations.

II. C. Java library classes.

III. C. Understand and modify existing code.

IV. A. Simple data types.

IV. B. Classes.

	7
	Decisions –

In this module students will learn how to program simple and complex decisions.

· Be able to implement decisions using if statements.

· Be able to implement decisions using if statements.

· Understand how to group statements into blocks.

· Learn how to compare integers, floating-point numbers, strings, and objects.

· Recognize the correct ordering of decisions in multiple branches.

· Program conditions using boolean operators and variables.
	GridWorld Case Study
	III. A. 2. Testing; identify boundary cases, generate appropriate test data.

III. A. 3. Testing: perform integration testing.

III. C. Understand and modify existing code.

	
	
	Lab and Programming Assignment
	I. B. 3. Class design; choose appropriate data representation and algorithms.

II. B. 4. c. Control; conditional.

	8
	While Loops –

In this module students will learn how to write programs using while loops to repeatedly execute one or more statements.

· Be able to program loops with while statements.

· Learn how to process input.

· Implement simulations.
	GridWorld Case Study
	III. A. 2. Testing; identify boundary cases, generate appropriate test data.

III. A. 3. Testing: perform integration testing.

III. C. Understand and modify existing code.

	
	
	Lab and Programming Assignment
	I. B. 1. Design and implement a class.

II. B. 4. Control, Methods, Sequential Iteration.

III. E. 1. Understand error handling; understand runtime exceptions.

	9
	For - do/while Loops – 

In this module students will learn how to write programs using for and do/while loops to repeatedly execute one or more statements.

· Be able to program looops with the for, and do/while statements.

· Understand nested loops
	GridWorld Case Study
	III. A. 2. Testing; identify boundary cases, generate appropriate test data.

III. A. 3. Testing: perform integration testing.

III. C. Understand and modify existing code.

	
	
	Lab and Programming Assignment
	I. B. 1. Class Design; design and implement a class.

II. B. 4. Control; methods, sequential, iteration.

III. F. 1. Reason about programs; pre-post conditions, assertions.

	10
	Arrays – 

In this module students will learn how to construct arrays, fill them with values, and access the stored values.

· Become familiar with arrays.

· Study common array algorithms.
	GridWorld Case Study
	III. A. 2. Testing; identify boundary cases, generate appropriate test data.

III. A. 3. Testing: perform integration testing.

III. C. Understand and modify existing code.

	
	
	Lab and Programming Assignment
	III. B. Debugging; categorize errors, identify and correct errors, employ techniques for error detection.

IV. C. One-dimensional arrays.

V. A. Operations on A-level data structures; traversals, insertions, deletions.

	11
	Array Lists –

In this module students will learn how to construct array lists, fill them with values, and access the stored values.

· Become familiar with using ArrayLists.

· Learn about wrapper classes, auto-boxing, and the enhanced for loop.

· Understand when to choose ArrayLists and arrays in your programs.

· Implement partially filled arrays.
	GridWorld Case Study
	III. A. 2. Testing; identify boundary cases, generate appropriate test data.

III. A. 3. Testing: perform integration testing.

III. C. Understand and modify existing code.

	
	
	Lab and Programming Assignment
	I III. B. Debugging; categorize errors, identify and correct errors, employ techniques for error detection.

III. G. Analysis of algorithms.

V. A. Operations on A-level data structures; traversals, insertions, deletions.

	12
	Designing Classes – 

In this module students will learn more about designing classes. They will discuss how the codepts of pre- and postconditions enable you to specify, implement, and invoke methods correctly. The will also lean more about static methods and variables.

· Learn how to choose appropriate classes.

· Understand the concepts of cohesion and coupling.

· Minimize the use of side effects.

· Document the responsibilities of methods and their callers with preconditions and postconditions.

· Understand the difference between instance methods and static methods.

· Introduce the concept of static fields.

· Understand the scope rules for local variables and instance fields.
	GridWorld Case Study
	III. A. 2. Testing; identify boundary cases, generate appropriate test data.

III. A. 3. Testing: perform integration testing.

III. C. Understand and modify existing code.

	
	
	Lab and Programming Assignment
	I. A. 2. Program design; apply data abstraction and encapsulation.

I. B. 1. Class design; design and implement a class.

II. A. 1. Implementation techniques; Methodology, object-oriented development, topdown development, encapsulation and information hiding, procedural abstraction.

II. B. 1. Programming constructs, primitive types vs. objects.

II. B. 2. Programming constructs, declaration, variable declaration, class declarations, method declarations, parameter declarations.

II. B. 3. Programming constructs; console output.

II. C. Java library classes.

III. A. 1. Testing; test classes and libraries isolation.

III. B. 1. Debugging; categorize errors: compile-time, logic.

III. B. 2. Debugging; identify and correct error.

IV. B. Classes.

	13
	Interfaces and Polymorphism –

In this module the student will study the invocation of methods of classes that implement a common interface.

· Learn about interfaces.

· Be able to convert between class and interface references.

· Understand the concept of polymorphism.

· Appreciate how interfaces can be used to decouple classes.

· Learn how to implement helper classes as inner classes.

· Understand how inner classess access variables from the surrounding scope.

· Implement event listeners for timer events.
	GridWorld Case Study
	III. A. 2. Testing; identify boundary cases, generate appropriate test data.

III. A. 3. Testing: perform integration testing.

III. C. Understand and modify existing code.

	
	
	Lab and Programming Assignment
	I. B. 3. Class design; choose appropriate data representation and algorithms.

I. B. 4. Class design; apply functional decomposition.

I. B. 5. Class design; extend a given class using inheritance.

II. B. 2. d. Programming constructs; interface Declarations



	14
	Boolean Algebra – 

In this module students will learn how to 

· Use negations of Boolean assertions.

· Learn Boolean Algebra and DeMorgan's laws.

· Use applications of DeMorgan's laws.
	GridWorld Case Study
	III. A. 2. Testing; identify boundary cases, generate appropriate test data.

III. A. 3. Testing: perform integration testing.

III. C. Understand and modify existing code.

	
	
	Lab and Programming Assignment
	I. B. 3. Class design; choose appropriate data representation and algorithms.

	15
	Files and Streams –

In this module students will learn how to write Java programs that interact with dish files.

· Be able to read and write text files.

· Become familiar with the concepts of text and binary formats.

· Learn about encryption

· Understand when to use sequential and random file access.

· Be able to read and write objects using serialization.
	GridWorld Case Study
	III. A. 2. Testing; identify boundary cases, generate appropriate test data.

III. A. 3. Testing: perform integration testing.

III. C. Understand and modify existing code.

	
	
	Lab and Programming Assignment
	I. A. 1. Program design; read and understand a problem description, purpose, and goals.

	16
	Recursion –

In this module students will see simple and complex examples of recursion and learn how to “think recursively”.

· Learn about the method of recursion.

· Understand the relationship between recursion and iteration.

· Analyze problems that are much easier to solve by recursion than by iteration.

· Learn to "think recursively".

· Be able to use recursive helper methods.

· Understand when the use of recursion affects the efficiency of an algorithm.
	GridWorld Case Study
	III. A. 2. Testing; identify boundary cases, generate appropriate test data.

III. A. 3. Testing: perform integration testing.

III. C. Understand and modify existing code.

	
	
	Lab and Programming Assignment
	II. B. 4. e. Programming constructs; recursion.

	17
	Quadratic Sorts –

In this module students will 

· Study three different sorting algorithms.

· Appreciate that algorithms for the same task can differ widely in performance.
	GridWorld Case Study
	III. A. 2. Testing; identify boundary cases, generate appropriate test data.

III. A. 3. Testing: perform integration testing.

III. C. Understand and modify existing code.

	
	
	Lab and Programming Assignment
	III. G. 1. Analysis of algorithms; inromal comparisons of running times.

III. G. 2. Analysis of algorithms; exact calculation of statement execution counts.

V. C. Sorting; selection, insertion, and mergesort.

	18
	Searching –

In this module students will

· Study the sequential and the binary search.

· Appreciate that algorithms for the same task can differ widely in performance.
	GridWorld Case Study
	III. A. 2. Testing; identify boundary cases, generate appropriate test data.

III. A. 3. Testing: perform integration testing.

III. C. Understand and modify existing code.

	
	
	Lab and Programming Assignment
	III. G. 1. Analysis of algorithms; inromal comparisons of running times.

III. G. 2. Analysis of algorithms; exact calculation of statement execution counts.

V. B. Searching; sequential and binary.


